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A bstract

This thesis focuses on a review of the theoretical foundation, and an empirical exam­

ple, of structural equation modeling. The theoretical review includes model specifi­

cation, identification, estimation, assessment of fit, and respecification. An example 

from the field of educational psychology is provided to illustrate the theory, together 

with a detailed discussion of the results. The example involves the relations among 

three latent variables (worry, visualization, and problem-solving ability) on the per­

formance of students in Calculus. The thesis concludes with a brief discussion of 

some difficulties of this method.
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Chapter 1

Introduction

Substantive use of structural equation modeling (SEM) has been growing in psy­

chology and the social sciences. In fact, SEM has been known as a unified model 

which joins models and methods from econometrics, psychometrics, sociometrics, 

and multivariate statistics (Bentler, 1992). The generality and wide applicability of 

the structural equation model approach has been amply demonstrated (Joreskog & 

Sorbom, 1989; Bentler, 1992).

The genesis of SEM can be found in the idea of path analysis. Path analysis 

is defined as a strategy for understanding causal processes through the analysis of 

correlational data. After development by the geneticist Sewall Wright (1921) as a 

quantitative aid for biological research, path analysis was introduced to the social 

sciences by Simon (1954, 1957). Later, Blalock (1961, 1962, 1964) extended and 

popularized Simon’s work. Through additional contributions by Boudon (1965) and 

Duncan (1966), path analysis became a viable method for rationally inferring causal

1
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relationships from correlations, provided certain highly restrictive assumptions are 

met.

With all these accomplishments of path analysis, Joreskog (1973), Keesing (1972), 

and Wiley (1973) developed very general structural equation models that incorpo­

rated path diagrams and other features of path analysis into their presentations. 

These techniques are known by the abbreviation of the JKW model, or more com­

monly as the LISREL model. Later, Bentler and Weeks (1980), McArdle and Mc­

Donald (1984), and others have proposed alternative representations of general struc­

tural equations.

As is path analysis, structural equation modeling is a method for estimating 

the magnitude of the causal relationships that are assumed to operate among the 

variables in the model. The term  “structural” stands for the assumption that the 

parameters are not just descriptive measures of association but rather that they 

reveal an invariant “causal” relation. However, converting association into causation 

is not that simple and needs strong restrictions and assumptions, as many researchers 

indicate (Cliff, 1983; Freedman 1986, 1993; Anderson and Gerbing, 1988). Therefore, 

this paper focuses on the theoretical review of SEM for causal inference along with 

an empirical example of the SEM method. Chapter 2 provides a brief review on the 

theoretical foundation of SEM. In Chapter 3, a practical example of the use of SEM 

is presented.

2
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C hapter 2

Structural Equation M odel (SEM )

The general structural equation model represents a synthesis of two model types: 

one is measurement model (or, a confirmatory factor analysis); and the other is 

a latent variable model (or, structural model). A confirmatory measurement, or 

factor analysis, model specifies the relation of the observed measures to their posited 

underlying constructs, with the constructs allowed to intercorrelate freely. On the 

other hand, a structural model shows the influence of latent variables on each other.

In this chapter, we briefly summarize model specification, identification, estima­

tion, assessment of fit, and respecification from Bollen (1989) and Byrne (1994).

2.1 M odel Specification

The first component of the structural equation is the latent variable model, 

rj =  Br} +  r £  +  C

3
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where rj is the m X 1 vector of latent endogenous random variables; £ is the n x 1 

latent exogenous random variables; B  is the m  x m  coefficient m atrix showing the 

influence of the latent endogenous variables on each other; and r  is the m  x n 

coefficient m atrix for the effects of £ on T). The matrix ( I  — B )  is assumed to be 

nonsingular. £ is the disturbance vector that is assumed to have an expected value of 

zero E(C) =  o and which is uncorrelated with £. Also, it is assumed that E(rj) = o 

and E  (£) =  o.

The second component of the general structural equation model is the measure­

ment model,

y  = A yT) +  e 

x  =  A x£ +  S

where the y(p  x 1) and x(q  x 1) vectors are observed variables; A y(p x m) and 

A x(q X n) are the coefficient matrices that show the relation of y  to i] and x  to £, 

respectively; and e(p x 1) and the S(q x 1) are the errors of measurement for y  and 

* , respectively. The errors of measurement e and S are assumed to be uncorreffited 

with £ and £, and with each other, r), £, e, and 5 are also assumed to have an 

expected value of zero. All of these relations and assumptions are summarized in 

the example of the path diagram in Figure 2.1.

The procedures of SEM emphasize covariances rather than cases. In SEM, we 

minimize the difference between the sample covariances and the covariances pre­

dicted by the model, instead of minimizing functions of observed and predicted
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Figure 2.1: Example of path diagram for SEM

individual values. The fundamental hypothesis for the structural equation proce­

dures is that the covariance m atrix of the observed variables is a function of a set of 

parameters:

E  = E (6 )

where £  is the population covariance m atrix of observed variables; 6 is a vector 

that contains the model parameters; and E (0 )  is the covariance matrix written as 

a function of 0. That is, each element of the covariance m atrix is a function of one 

or more model parameters.

The implied covariance matrix E{6)  can be decomposed into three pieces: the 

covariance matrix of y , E yy{9)\ the covariance matrix of y  with x ,  E yx(6)] and
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the covariance matrix of x,  S xx{6). Consider first 2Jyy(0), the implied covariance 

m atrix of y:

S yy{9) =  E ( y y ' )

= E (A yri +  e)(rf'A'y +  e')

=  A yE(riri,) A ,y +  © £

where 0 £ =  covariance matrix of e.

Since rj =  ( I  — B )-1( r £  +  £),

E,y(6)  = M I -  B ) - '  ( r $ r  +  !P) [ ( / -  B ) - ] '  A'y +  0 ,

where #  =  covariance matrix of £ and & =  covariance matrix of £.

When referring to the covariance matrix of y  with x,  S yx, as a function of the 

structural parameters, it is E yx{9).

E yx{9) = E{yx>)

=  E[(Ayr, + e)(t 'A'x + S') 

= A yE(r,Z>)A>x

Again using rj = ( I  — B )  1( r $  +  £),

2 ^ ( 0 )  = Ay ( I  -  B ) - ' r * A ' x

6
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Finally, the covariance m atrix of x ,  J2xx> written as a function of the structural 

parameters is:

Exx{Q) =  E (x x ' )

= E (A xt  + 6)(Z>A'x + 6>)

=  A xE { t t ' )A 'x + 0 s 

= A x& Ax +  ®s

where 0$  =  covariance m atrix of S.

Therefore, by assembling these three components, the covariance matrix for the 

observed y  and x  variables can be represented as a function of the model parameters:

£ { 9 ) =
^yy(Q) ^yx (^ )  

£ xy(9) £ Xx(9)

2.2 Identification

In the previous section, we showed that the covariance structure £  = £ { 0 )  implies 

2 03+  <?)(£* +<7 +  1) nonredundant equations of the form cqj =  <7,-j(0)(z <  j ) ,  where crtJ 

is the i j  element of £  and <Jij(0) is the i j  element of £ ( 0 ) .  If an element of 6 can 

be expressed as a function of one or more cr,j, then this establishes its identification. 

If all elements of 9 meet this condition, the model is identified.

There are widely used rules for the identification of a general model. The 2-rule, 

the two-step rule, and MIMIC (Multiple Indicators and Multiple Causes) rule are
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reviewed in this section. Even though none of these rules is a necessary and sufficient 

condition for model identification, researchers can apply one or more of these to help 

assess a model’s identification.

2.2.1 t-R ule

The t-rule for identification is that the number of nonredundant elements in the 

covariance matrix of the observed variables must be greater than or equal to the 

number of unknown parameters in 0:

t <  \{p +  q)(p +  Q + 1)

where p +  q is the number of observed variables and t is the number of free and 

unconstrained parameters in 0. The nonredundant elements of U  = S ( 6 )  imply 

\ (p  +  q)(p +  <7 +  1) equations. If the number of unknowns in 6 exceeds the number 

of equations, identification is not possible. This rule is a necessary but not sufficient 

condition of identification.

2.2.2 T w o-Step  R ule

The two-step rule consists of two parts: the first part is confirmatory factor analysis; 

and the second part is path analysis of latent variables. In the first step, a model is 

reformulated as a measurement model, viewing the original * and y  as x variables 

and the original £ and rj as £ variables. The only relationships between the latent

8
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variables that are of concern are their variances and covariances (^ ). If identifica­

tion can be established for the confirmatory factor analysis, the second step of the 

identification can be applied.

The second step concerns establishing identification of latent variable model as 

if latent variables were observed with no measurement error. That is, treat latent 

variable model as a structural equation in observed variables. Then it is ready to 

determine whether B ,  T, and 3* are identified. If the first step shows that the 

measurement parameters are identified and the second step shows that the latent 

variable model parameters also are identified, then this is sufficient to identify the 

whole model.

2.2.3 M IM IC R ule

MIMIC models contain observed variables that are multiple indicators and multiple 

causes of a single latent variable. The equations for this model are:

rh  =  rx  +  Cl 

y  =  A yr,h + e 

x  = £

The equations show that x  is a perfect measure of £ and that only one latent variable, 

r}1, is present. The variable rj1 is directly affected by one or more x variables, and 

it is indicated by one or more y variables.
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Identification of MIMIC models that conform to the above equations follows if 

p (the number of y’s) is two or greater and q (the number of rc’s) is one or more, 

provided that r)1 is assigned a scale. The MIMIC rule that p > 2 and q < 1 is a 

sufficient condition for identification but not a necessary one.

2.3 E stim ation

The estimation procedures derive from the relation of the covariance matrix of the 

observed variables to the structural parameters. In the section on model specifica­

tion, it was shown that the covariance m atrix is:

S xx{0) A y{ I - B ) - ' r 4 > A ' x

A X( I  -  B ) ~ ' r $ A ' y A x$A'x + 0 s
2 ( 9 )  =

where

E xx{6) =  A V( I  -  B ) " 1 ( J W '  +  tf) [ (/ -  B ) - 1]' A'y +  0 e

The unknown parameters in B , B, <£, and are estimated so that the implied 

covariance m atrix S  (=  27(0)), is close to the sample covariance matrix S.

Many different fitting functions for the task are possible. The fitting functions 

F (S ,  27(0)) are based on S ,  the sample covariance matrix, and 27(0), the implied 

covariance m atrix of the structural parameters. The fitting functions have the fol­

lowing properties:

(1) F (S ,  27(0)) is a scalar

10
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(2) F (S ,2 7 (0 )) > 0

(3) F (S ,  27(0)) =  0 if and only if 27(0) =  S

(4) F (S , 27(0)) is continuous in S  and 27(0)

Three such fitting functions, maximum likelihood (ML), unweighted least squares 

(ULS), and generalized least squares (GLS) are reviewed here.

2.3.1 M axim um  Likelihood (M L)

In deriving Fm l , the set of N  independent observations are of the multinormal 

random variables y  and a?. If we combine y  and x  into a single (p +  q) x 1 vector z, 

where z consists of deviation scores, its probability density function is

/ ( z ;  27) =  (27r)-(p+^ 2|27 |-1/2exp
- k s ~ 'z

For a random sample of N  independent observations of z, the joint density is

/ ( z , , . . . ,  z j v ; 27) =  / ( z , ; 27) / ( z 3; 27) • • ■ f ( z N- 27)

W ith a given sample, the likelihood function is

L{9) =  (27r ) -Ar(p+9)/2|2 7 (0 )rAr/2exp

The log of the likelihood function is

N

. z  i= l

l°g L(d) —
- N ( p  +  q) N . 1 N

2 log(2jr) -  j l o g  127(9)1 -  -  ^ z '2 7 - ( 9 ) z i

11



www.manaraa.com

The last term  of the log of the likelihood function can be rewritten as

=  - 4 l >  (»)*.-
L 1 = 1  z «=i

N  N r i
=  - y l >  J v - * ,■*!.£->(»)

z  i= 1

= - ^ t r [ 5 T - ‘(»)]

where 5* is the sample ML estimator of the covariance matrix which employs N  

rather than (N  — 1) in the denominator. Using the rewritten term, the log of the 

likelihood function can be represented as

N  N
log L{9) =  constant— — log |JC (0)|— — tr f S 'X 1 1(0)]

z z
N

=  constant— — {log \£{6)\  +  tr [S 'X 1 1(^)]} 
z

Based on the log of the likelihood function, the fitting function that is minimized 

can be represented as

FMl =  log |27(0)| +  tr(S 2 7 -l (0)) -  log \S\ -  (p + q)

The unbiased sample covariance matrix S  is used in Fm l , while the ML estimator 

S* is used in log L(6). Since S* = [(N-1)/N]S, these matrices will be essentially 

equal in large samples.

12
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2.3.2 U nw eighted  Least Squares (ULS)

The ULS fitting function is 

Fvls = t̂r [(5 -  E{Q)f

F u l s  minimizes one-half the sum of squares of each element in the residual matrix 

(S  — U(9)).  The residual m atrix in this case consists of the differences between 

the sample variances and covariances and the corresponding ones predicted by the 

model. See Bollen (1989) for further details.

2.3.3 G eneralized Least Squares (GLS)

Since F u l s  is not scale invariant, it would seem reasonable to apply a GLS fitting 

function that weights the elements of (S  — S{9 ) )  according to their variances and 

covariances with other elements. A general form of the GLS fitting function is

F g l s  =  i t r ( { [ S - . £ ( 0 ) ] W - } 2)

where W -1 is a weight matrix for the residual matrix.

For selecting the “correct” weighting matrix W ~ 1, we make two assumptions:

( 1 )  E(Sij) = (7 ij

(2) the asymptotic distribution of the elements of S  is multinormal with means of 

<Tij and asymptotic covariances of S(j and sgh equal to N ~ 1(aigajh + Cih&jg)

If the assumptions are satisfied, then W ~ 1 should be chosen so that p lim W -1 = 

c27-1, where c is any constant (typically c = 1).

13
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Although many W  1 are consistent estimators of E  1, the most common choice

is W - 1 = S - 1:

Fo l s  =  i t r ( { [ S - S ( # ) ] S - } 2)

= i t r { [ / - x : ( # ) S - f }

This F q l s  is found in both LISREL and EQS (Joreskog h  Sorbom, 1989; Bentler, 

1992).

2.4 A ssessm ent o f F it

After estimating model parameters, given a converged and proper solution, a re­

searcher should assess how well the specified model accounted for the data. To 

help in the evaluation of a model, a number of statistical measures of fit have been 

proposed. For example, the LISREL program provides the probability value asso­

ciated with the chi-square likelihood ratio test, the goodness-of-fit index, and the 

root-mean-square residual (Joreskog Sorbom, 1986). The chi-square probability 

value and the normed and nonnormed fit indices (Bentler Sz Bonett, 1980) are ob­

tained from the EQS program (Bentler, 1985). For the proper model evaluation, it 

is suggested to examine two kinds of fit measures: overall model fit measures and 

component fit measures (Bollen, 1989).

14
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2.4.1 O verall M odel F it M easures

The covariance structure hypothesis is that £  =  £ ( 0 ) .  The overall fit measures 

help to assess whether the hypothesis is valid, and if not, they help to measure 

the departure of £  from £ {9 ) .  Since £  and £ ( 9 )  are unavailable, their sample 

counterparts S  and £ { 9 )  are examined. The S  is the usual sample covariance 

matrix, and £ { 9 )  is the implied covariance matrix evaluated at the estimate of 9 

which minimizes either F m l > F g l s , or F j j l s -

2.4.1.1 R esiduals

The residual matrix is perhaps the simplest function of S  and £  for assessing the 

overall model fit. Since the null hypothesis, Ho, is £  = £ ( 9 ) ,  S  — £  can be used 

as the counterpart of £  — £ ( 9 ) .  The individual sample residual covariances are 

(sjj — crij) where s,j is the i j th  element in S  and <7,j is the corresponding element in 

£ .  The individual residuals can help in assessing model fit as Joreskog and Sorbom 

(1986) proposed:

R M R  =
t ' i f r ' i  9 (9 + 1 )

For a “good” model, all individual residuals should be near zero. However, the 

sample residuals are affected by several factors:

(1) the departure of £  from £ { 9 )

(2) the scales of the observed variables

15
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(3) sampling error

The most interesting factor is (1), that is, whether E  =  E(9) .  When E  ^  E(6) ,  

one or more of the covariances or variances of the observed variables are not exactly 

predicted by the model. Also, the magnitudes of the individual and mean of the 

residuals are altered if the observed variables are measured in different units. A big 

residual can be due to an observed variable with scale units that have a much larger 

range than that of the other variables. In addition, the expected magnitude of the 

sample residuals depends on N,  even when the null hypothesis is true. Under fairly 

general conditions, S  — E  converges to E  — E ( 6 )  as N  —>■ oo. For a given model, 

(Sij — frij) tends to be smaller, the bigger is the sample. So, in judging the residuals 

for small samples, it is expected that bigger residuals than when examining residuals 

in large samples, when the model is true in both sample.

Considering the negative factors previously stated, some researchers propose cor­

rected residuals. For the scale problem, Bentler (1985) suggests correlation residuals. 

Each correlation residual is r,j — f,j where r,j is the sample correlation of the ith 

and j th  variables, and r,j is the model predicted correlation. Individually (r,-j — i'jj) 

gauges how well a correlation ( or a standardized variance for i =  j )  is reproduced. 

A correlation residual should be fairly close to zero for most well-fitting models. On 

the other hand, Joreskog and Sorbom (1986) propose a normalized residual:

(sij ~  &ij)Normalized residual 1/2

16
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The numerator is the residual and the denominator is the square root of its estimated 

asymptotic variance. This normalized residual provides an approximate correction 

for such sample size effects and for scaling differences. The largest absolute values 

of the normalized residuals indicate the elements that are most poorly fit by the 

model.

2.4.1.2 A Chi-Square (y 2) Test

The quantities of (N  — 1  )Fml  or (N  — 1)Tgls provide chi-square estimators to test 

Ho' £  =  £(&)■ Since Ho is equivalent to the hypothesis that £  — £ { 9 )  =  0, the 

chi-square test is a simultaneous test that all residuals in £  — £ { 9 )  are zero.

Here, we review how the likelihood ratio rationale for the asymptotic chi-square 

distribution of ( N - I ) F ml can be established. The null hypothesis indicates that the 

specification of the fixed, free, and constrained parameters in A x, and ®s is valid. 

Under H0, we have ML estimators of the free and constrained parameters in these 

matrices that together with the fixed parameters comprise the estimated matrices 

A x, and @s. Let log Lq represent the log of the likelihood function corresponding 

to Ho, and log Li represent that corresponding to an alternative hypothesis, H\. 

When evaluated at S  and £ ,  the log Lq is

lo g lo  =  - ^ l { l o g | 2 |  + t r ( 2 - ‘S ) }

17
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This is the log of the numerator for the likelihood ratio test. If £  is set to S  the 

sample covariance matrix, the log L\ is at its maximum value. So the log L 1 is

log Li = ~ N 2 1  {log \S\ +  tr(S  x5)}

N  -  1
— {log| S|  +  9}

This is the log of the denominator for the likelihood ratio. Since Hi sets £  to

S ,  comparing logLi to logL 0  evaluates Ho vis-a-vis a perfect fit, Hi. The natural

logarithm of the likelihood ratio, log(To/Ti), when multiplied by — 2  is distributed 

as chi-square variate when H0 is true and (N  — 1) is large. In this case

—2 log =  —2 log L q + 2 log L\

=  (N  -  1) [log\£ \  +  t r (£ ~ 'S )]  - ( N -  l)(log |S | +  q)

=  (IV -  1) (log 1^1 +  tr ( £ ~ 'S )  -  log \S\ -  q)

In the last line of the right-hand side of the previous equation, the quantity within 

parentheses is the fitting function F m l  evaluated at S  and £ .  So, the expression 

of the last line shows that (IV — 1) times the fitting function Fm l  evaluated at 

9 is approximately distributed as a chi-square variate. Its degrees of freedom are 

\q{q + 1) — t, where the first term is the number of nonredundant elements in S  

given q observed variables, and t is the number of free parameters in 6 .
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For the chi-square test of the SEM, the null hypothesis H0 is that the constraints 

on £  implied by the model are valid (i.e., £  = £{0 )) .  The standard of comparison 

is the perfect fit of £  equals to S .  The probability level of the calculated chi-square 

is the probability of obtaining a x 2 value larger than the value obtained if Ho is 

correct. The higher the probability of the x 2> the closer is the fit of H0 to the 

perfect fit.

The chi-square approximation makes use of several assumptions:

(1 ) x  has no kurtosis

(2 ) the covariance matrix is analyzed

(3) the sample is sufficiently large

(4) the H0’. £  = £ { 0 )  hold exactly

When all of these assumptions are satisfied, ( N  — 1  ) F m l  (°r ( N  —  1 ) F q l s )  is a good 

approximation to a chi-square variable suitable for tests of statistical significance. 

However, if one or more of the preceding conditions is violated, then the x 2 test loses 

some of its value.
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2.4 .1 .3  A dditional M easures o f Overall M odel F it

There are several other ways to measure overall model fit. Joreskog and Sorbom

(1986) propose a Goodness of Fit Index (GFI) and an Adjusted GFI for models

fitted with Fml  and with Fjjls'-

tr  [ ( I T 1 -  I f ]
G F Im l  = 1 ------ ^ ------- T1

t r  ( 1 7 - S ) ’

A G F I ml =  1 — 9 (9 + 1 )

G F Iuls — 1  —
tr

2  df

\ l  -  £ f ]

[ 1  -  G F Im l)

A G F IULs = 1 -

tr  (S 2) 

9 (9 + 1 )
2  df

[ 1  — G F Iuls]

where

df  =  ( l )  (p +  q)(p +  q +  1 ) — (number of parameters to be estimated)

The G F Im l  measures the relative amount of the variances and covariances in S  

that are predicted by £  The A G F I ml adjusts for the degrees of freedom of a model 

relative to the number of variables.

Also, Tanaka and Huba (1985) propose GLS versions:

G F Igls =  1
tr (.I - E S - 1)2

AG FI  gls — 1 —

9

9 (9 + 1 )
2 d f [ 1  -  G F Igls)
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2.4.2 C om ponent F it M easures

In addition to the measure of overall fit, an examination of the components of the 

model is essential since nonsense results for individual parameters can occur. For 

the component fit of a model, several measures are suggested: parameter estimates, 

asymptotic standard errors, asymptotic correlation m atrix of parameter estimates, 

and R 2. for observed variables. Among them, parameter estimates and R 2. for 

observed variables are discussed here.

For the parameter estimates of A x, and &s, misspecification of the model 

could give improper solutions. Improper solutions refer to sample estimates that 

take values that are impossible in the population, such as negative variances and 

correlations greater than one. Improper solutions can be caused by several factors. 

First, the covariance (correlation) matrix analyzed may have outliers or influential 

observations that lead to distorted measures of association for the observed variables, 

which in turn affect the parameter estimates. Second, there could be a fundamental 

fault of specification in the model. The model requires reconstruction based on the 

researcher’s substantive knowledge.

Another measure of component fit is R 2 for each x,- variable. It is estimated as

where cf,-,- =  variance of x,- predicted by the model. The R% is analogous to the 

squared multiple correlation coefficient, with x,- as the dependent variable and the
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latent variables (£) as the explanatory variables. Generally, the goal is finding mea­

sures with high R 2 's.

2.5 R especification

There are many potential causes for low measures of overall fit. A common cause is 

a misspecified model. The incorrect inclusion or exclusion of a parameter can be the 

error. So a common response to a poorly fitting model is to respecify it. However, 

respecification decisions should not be based on statistical considerations alone but 

rather in conjunction with theory and content considerations. The potentially richest 

source of ideas for respecification is the theoretical or substantive knowledge of the 

researcher.

The first respecification necessary is in response to nonconvergence or an im­

proper solution. Nonconvergence can occur because of a fundamentally incongruent 

pattern of sample covariances that is caused either by sampling error in conjunction 

with a properly specified model or by a misspecification. Relying on content, one can 

obtain convergence for the model by respecifying one or more problematic indicators 

to different constructs or by excluding them from further analysis.

Considering improper solutions, Van Driel (1978) presented three potential causes: 

sampling variations in conjunction with true parameter values close to zero, a funda­

mentally misspecified model, and underidentification of the model. Recently Gerbing
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and Anderson (1987) found that for improper estimates due to sampling error, re- 

specifying the model with the problematic parameter fixed at zero has no appreciable 

effect on the parameter estimates of other factors or on the overall goodness-of-fit 

indices.

Given a converged and proper solution but unacceptable overall fit, Anderson 

and Gerbing (1988) suggest four basic ways for respecification:

(1 ) relate the indicator to a different factor

(2 ) delete the indicator from the model

(3) relate the indicator to multiple factors

(4) use correlated measurement errors
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C hapter 3

Em pirical A pplication

In this Chapter, an empirical example is presented to show how a structural model 

can be used for latent variables. The example is a three-factor model with two 

or three indicators (See Figure 3.1). The structural model is designed to examine 

the relationships among three latent variables: worry (£1 ), visualization (f2), and 

problem-solving ability (771). The latent variable worry has two indicators, worryl 

(xi) and worry2 (x2). Visualization construct also has two indicators, visualizationl 

(£3 ) and v isualization (£ 4 ) .  The construct of problem-solving ability has three 

indicators, self-efficacy (yi), metacognition (y2), and cognitive strategy (j/3 ). For 

this example, the EQS program (Benter, 1992) is used to analyze the data set.

3.1 D ata

The subjects consist of 113 students in a calculus course at University of Southern 

California. At the end of the semester (Spring, 1995), they were asked to complete
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V 12

6 3  S4

Figure 3.1: Confirmatory Factor Analysis Model for Worry (<5), Visualization (£2), 
and Problem-Solving Ability (£3)
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a questionnaire booklet used to measure three constructs in this study. The Paper 

Folding Test (French, Ekstrom, & Price, 1963) was used to measure visualization 

skills and the Self-Assessment Questionnaire (O’Neil & Abedi, 1992) was used to 

measure worry, self-efficacy, metacognition, and cognitive strategy.

3.2 M odel Specification

Based on the theoretical discussion on model specification in the previous chapter, 

the model is specified in two components: the structural model of the latent vari­

ables; and the measurement model of the relationships between latent variables and 

indicators. The general system for the structural model containing both components 

is expressed as:

77 =  B r j  +  r £  +  C  

y  = AyT} +  e

33 =  -}- S

3.2.1 Structural M odel

The data represents the relations of worry, visualization, and problem-solving ability 

in Calculus. In many previous research (Hembree, 1992; Malpass, 1994; Mayer, 

1990, 1993), worry is considered as a negative effect on problem-solving ability in 

Mathematics, while visualization is often seen as enhancing it. In addition, worry
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Figure 3.2: A Latent Variables Model of Worry (£1 ), Visualization (£2)> and Problem- 
Solving Ability (rft)

and visualization may have negative correlational relation. These idea suggest that 

the latent variable model should have worry (£1 ) and visualization (£2) influencing 

problem-solving ability (r]i). Based on this description, we can form the elements of 

r  and the latent variable model:

m = 7h £ i  + 7 1 2 6  +  Ci

t o ] 7n 712 +  [C i ]

The relationships in the latent variable model are represented in the path diagram 

as shown in Figure 3.2.

3.2.2 M easurem ent M odel

For the measurement model, seven indicators are used to measure three constructs 

of x  part and y part. For x part equations, two indicators are used for each construct
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of worry (£1 ) and visualization (£2 )- The indicators of worryl (a,’!) and worry2 (x2) 

and the indicators of visualizationl (x3) and visualization2  (2 4 ) are for the worry 

and the visualization constructs, respectively. The scale of £ 4  is set to xi,  and that 

for £ 2  is set to 2 3 . Furthermore the coefficient linking £ 1  and x 2, and that linking 

£ 2  and X4 are unconstrained. The preceding information reveals the pattern of A x. 

The x  measurement equation is

X \

X2

X3

X4

£i +  *i 

^ 2 £l +  $2

£ 2  +  <$3 

^ 4  £ 2  +  ^ 4

' Xi ' ‘ 1 0 '
X2 A2 0
x3 0 1

. X4 .  0 1___

+
r *

<*2

For y part, three measures of problem-solving ability (t]i) are self-efficacy (j/i), 

metacognition (y2), and cognitive strategy (y3). Problem-solving ability (771) is set 

to the scale of 3/1 , whereas coefficients showing t/j’s influence 0 1 1  y2 and t/ 3  are un­

constrained. The y  measurement equation is

J/i = Vi +  ei

2 /2 =  +  ̂ 2

2/3 =  +  e3
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5j i>2  53  o4

Figure 3.3: Confirmatory Factor Analysis Model for Worry (£1 ), Visualization (£2), 
and Problem-Solving Ability (£3)

" y i ' 1 ' e i  "
V2 = ^6 lm} + 2̂

. 2/3. . ^ £3 .

All of these relations are summarized in the path diagram in Figure 3.3. Using the 

model we have specified, we want to examine the relationships among the latent 

variables. Similarily with other studies, we expect visualization has a positive ef­

fect on problem solving ability, while worry influences it negatively. We expect to 

investigate the negative relation between worry and visualization as well.

3.3 Identification

The equations for the path diagram of this model is

[Vi] = 7n 712 +  [C i]
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r x l ' • 1 0  ' r * i  i
x 2 a2 0 £ 1 ' 1 *2
X 3 0 1 £ 2

*T <̂3
X4 .  0 A4  . . S* .

'  Z/i " " 1 ' ’  C]
2/2 = ^6 [7 1 ] + £ 2

. 2/3 . . £3

The covariance m atrix of the observed variables £  is

Var(xi) ’

Cov(x 2 ,Zi) Var(x2)
Cov(x3, xi) Cov(x3 , x 2) Var(x3)
Cov(x4 , Xi) Cov(x4 , x 2) Cov(x4 , x 3) Var(x4)
C o v (y i ,x i) Cov(j/i, x 2) Cov(j/i, x 3) C ov(y i ,x 4) Var(yi)
Cov(2/2, Ki) Cov(j/2 , x 2) Cov(y2, x3) Cov(7/2 , *4) Cov(y2i 2/l) Var(y2)

. Cov(y3 ,x i ) Cov(y3 l x 2) Co v(y3 , x 3) Cov(y3 , x 4) Cov(y3 ,y i ) Cov(y3 , 2/2) Var(y3) _

Substituting the parameter matrices for the above model into the implied covari­

ance m atrix derived in the previous chapter shows that £ ( 9 )  is

where

011 + Vi
A20n A|0u -r v 2
012 A2012 022 + V3
A2A4012 A2 A4 0 1 2 A4022 A|022 + V4

* 2 \ 292 3̂ A4 //3 01+ v
A6 ^ 2 A2 Ag0 2 Xq9s A4 Ag03 A6 0i
\ t92 A2A7̂ 2 A7  03 A4 A7 ^ 3 A701

Var (<£,■), 1 < i <  4

Var(cj), 5 < i <  7,1 <  j  <  3

Al^i+Ve
AgA70i A |0 i +  V7

V i =

01 

6 2

03

7i2i 0 h  +  2711712^12 +  712^12 +  0 n

711011 +  712012

711012 +  712022

[A 2 A4 Ag A7 711 712 <£11 0 1 2  022,
Var(ei) Var(e2) Var(e3) Var(<h) Var(<J2) Var(J3) V ar^) i p n ]

30



www.manaraa.com

6j 52 ft3 8^ 8 s( - f.]) k2)

Figure 3.4: The First Step of Reformulation for Two-Step Rule

A quick way to detect some underidentified models is by the i-rule. The covari­

ance structure of £  =  S ( 9 )  leads to twenty eight [= |(7)(8)] equations in seventeen 

unknowns (number of free parameters). Thus the model may be identified.

To further examine its identification, we apply the two-step rule. The first step 

establishes that all parameters in the measurement model are identified, including 

the covariance m atrix of the latent variables. So, for this example, 771 is redefined as

Vu 2/2 , and y3 are now xs, x 6, and x7, ci, e2, and e3 are 65, S6, and S7, and 77 1 , 7 1 1 , 

and 7 2 1  are not considered. Instead, we now examine the variances and covariance 

°f <fii &} and the new £3(=  771). This reformulation is represented in the Figure 3.4. 

In the second step, the latent variable model parameters are identified if the latent 

variables are treated as perfectly measured variables. Figure 3.5 shows the latent 

variable model.
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Figure 3.5: The Second Step of Latent Variable Model for Two-Step Rule

3.4 E stim ation  and M odel Evaluation

The hypothesis of our model is £  =  S {8 ) .  Thus, given the sample covariance 

matrix of the observed variables, S ,  how can we choose 8 so that is close to

S I  In this study, the ML fitting function is used. As shown earlier, the ML fitting 

function is

F m l  = log |27(0)| +  t r ( S r -* ( 0 ) )  -  log |S | -  ( p  + q)

We want to minimize this function with respect to 8. Similarly, the GLS and ULS 

fitting functions can be used as many researchers have shown (Bentler, 1992; Bollen, 

1989; Joreskog h  Sorbom, 1989).

Based on the fit assessment of the base model and the result of the LMtest, the 

model is respecified as shown in Figure 3.6. Two correlational relations are added:

32



www.manaraa.com

x5 (= y.)

1

\X?
r >4

X6(= y2) x 7 (=y3)

1 1

Figure 3.6: The respecified CFA model 

visualization (£ 4 ) and self-efficacy (x5): and metacognition (a^) and cognitive strat- 

egy (3:7 ). The correlational relations of these errors are uniqueness of the indicator 

shared in common rather than errors.

In our example, the lower half of the sample covariance m atrix, S , is in Table

3.1.

The residual m atrix (S  — S )  after applying F M l  is

0 . 0 0 0

0 . 0 0 0 0 . 0 0 0

0.425 -0.084 0 . 0 0 0

S - E  = 0.501 0.108 -0.042 -0.088
-0.112 0.066 -0.152 -0.108 0.045

0.333 0.249 0.431 1.037 0.301 0 . 0 0 0

-0.901 -0.403 0.392 0.009 -0.354 0 . 0 0 0

None of the elements of this m atrix seems large. The average absolute value of 

the residuals is 0.219, while the average off-diagonal absolute covariance residuals is 

reported as 0.286. Compare to the magnitude of the elements in S ,  this is small. 

Since some elements of a covariance matrix are exactly predicted for a given model
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Table 3.1: Covariance Matrix and Standard Deviation for Observed Variables

Xx X2 x3 Xi 2/i 2 /2 2/3
Xx 3.504
X2 3.998 8.352
X3 0.223 -0.485 2.657
X4 0.266 -0.357 2.730 5.443
Vl -2.199 -4.083 0.440 1.767 12.292
2/2 -3.245 -6.863 1.446 2.213 14.283 46.567
2/3 -5.310 -9.169 1.643 1.459 16.881 52.850 87.068

sd 3.506 6.824 9.331 1.872 2.890 1.630 2.333

and fitting function regardless of the sample covariance matrix, we have some zero 

elements in the residual matrix.

For the measurement model, the ML estimates A x, A y, ©s, and © t are

A-x —

1.00 0.00 
1.98 0.00 
0.00 1.00 
0.00 1.59

A y  --
1.00
1.71
2.11

diag \ ©s) = 

diag ( 0 £) =

1.49 .40 .25 2.32 ] 

4.09 22.60 50.65

The ML estimates for the path model parameters and tP are

r  = - 1 . 0 2 2  .161 ]

2.01 
-.203 2.39 

-2.086 .592 8.15
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Table 3.2: The ML Estimates for the parameters

Parameter ML Estimates Standard Errors Standardized values
Ai

OOOOr-H - .758
A2 1.988 .369 .976
A3 1.000c - .949
A4 1.159 .881 .762
A5 1.000c - .816
A6 1.714 .376 .717
A7 2.113 .489 .647
7n -1.022 .229 -.507
7 1 2 .161 .221 .087
0 n 2.011 .540
0 1 2 -.202 .227 -.092
0 2 2 2.392 1.842

V a r ^ ) 4. 090 1.713
Var(e2) 22.599 5.585
Var(e3) 50.654 10.239
V ar(^) 1.493 .389
Var (S2) .404 1.323
Var(J3) .265 1.808
Var (0 4 ) 2.317 2.449

0 1 1 5.930 1.821

Note: c =  constrained to equal 1.00

= 5.93 ]

These estimates of parameters are reported with their standard errors and standard­

ized values in Table 3.2.

As far as the overall fit of the model is concerned, the measures are summarized 

in Table 3.3. The overall fit of this model is good. Since the probability value for 

the x 2 statistics (.197) with 9 df is higher than an a  level of .05, we don’t reject the
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Table 3.3: Summary of Overall Fit

Fit
Index X2(df) NFI NNFI CFI

Standardized
x 2 p-value

Estimates 12.29 (9) .96 .97 .99 1 2 . 1 1 .197

Table 3.4: The Component Fit Measures ( R^.’s and R 2y.'s)

Xx X2 X3 X4 2/i 2/2 2/3

R% .58 .96 .04 .60 . . .

K
.. _ _ _ . 6 8 .53 .43

hypothesis (U  = U(0)). Besides, all fit indices are extremely high. Therefore, our 

model is supported by the data.

For better fit assessment of the model, we need to examine the component mea­

sures. The R^.'s for the worry and visualization indicators and the R ^ s  for the 

problem solving ability indicators are shown in Table 3.4. Except for the first in­

dicator of the visualization factor, the squared multiple correlation coefficients for 

each indicator are moderate to high. Particularly, the second indicator of worry 

factor (x2) is extremely high, showing 96% of the variance in x 2 accounted for by 

the latent worry variable (^j).

In summary, the assessment of fit, both the overall and component fit measures 

suggest that the model properly matches the data. As we expected, worry (£i) has
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negative influence on problem solving ability (771), whereas visualization skills (£2) 

enhance the problem solving ability in Calculus. Worry and visualization are neg­

atively correlated. Worry alone explained a modest amount of the variance (about 

26% ) of problem solving ability. Since the effect of visualization on problem solving 

ability is not significant, the combined influence of worry and visualization led to 

about 26% explained variance in problem solving ability. In addition, the indica­

tors of worry and problem solving ability were fairly good, with 43% to 96% of the 

variance explained by the latent factors, while the indicators of visualization were 

relatively low with the percentage of explained variances 4% and 60%.
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C hapter 4

C onclusions

This paper reviews the theoretical foundation of structural equation modeling along 

with an empirical example. For the theoretical background, a brief discussion on 

model specification, identification, estimation, assessment of fit, and respecification 

is presented. For an empirical example, we show a structural model with three 

latent variables and seven indicators. The model examines the relationships among 

three latent variables: worry, visualization, and problem solving ability in Calculus. 

Worry and visualization have two indicators, whereas problem solving ability has 

three indicators. Briefly, worry has significant negative influence on problem solving 

ability while visualization doesn’t have significant effect on it.

As other researchers have indicated (Cliff, 1983; Freedman 1987, 1993; Anderson 

and Gerbing, 1988), there are many difficulties in establishing causal relations. Since 

the basic modeling techniques of SEM is converting association into causation, some 

caution is needed in application of the causal modeling method. First, identifying 

the exogenous variables is a problem since results can depend quite strongly on

38



www.manaraa.com

assumptions of exogeneity. Second, the possible effects of variables that are not 

included in a model must be considered. Third, a model is never confirmed by data; 

rather, it gains support by failing to be rejected. In spite of good fit of a model, other 

models with equal fit may exist. Fourth, the nominalistic fallacy—naming something 

does not necessarily mean that one understands it—must also be considered. So, 

validity and reliability of observed variables are required.
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A ppendix  A  

EQS Program  for th e  CFA M odel

/title
thesis: confirmatory factor analysis 

/specifications
case=113;var=7; me=ml; analysis=covariance; matrix=correlation 

/labels 
vl=worryl; v2=worry2; 
v3=visuall; v4=visual2; 
v5=selfeff; v6=metacog;v7=heuristic; 
fi=worry; f2=visual; f3=psability;

/equations 
vl= fl+el; 
v2=*fi+e2; 
v3= f2+e3; 
v4=*f2+e4; 
v6=f3+e6; 
v6=*f3+e6; 
v7=*f3+e7;

/variances 
f l = 1 . 0 * ;  
f 2=1.0*;  
f3=1.0*; 
el to e7=*;

/cov 
fl, f2=*; 
fl, f3=*; 
f 2 , f3=*; 
e7, e6=*; 
e5, e4=*;

/matrix=correlations
1 . 0 0 0

.739 1.000

.073 -.103 1.000

.061 -.053 .718 1.000
-.335 -.403 .077 .216 1.000
-.254 -.348 . 130 .139 .597 1.000
-.304 -.340 .108 .067 .516 .830
/standard deviations
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1.872 2.890 1.630 2.333 3.506 6.824 9.331
/lmtest 
set=pee;

/wtest
/end
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A ppendix B  

EQS program for th e  P ath  M odels

/title 
thesis: Path Analysis 

/specifications
case=113;var=7; me=ml; analysis=covariance; matrix=correlation 

/labels 
vl=worryl; v2=worry2; 
v3=visuall; v4=visual2; 
v5=selfeff; v6=metacog;v7=heuristic; 
fl=worry; f2=visual; f3=psability;

/equations 
vl= fl+el; v2=*fl+e2; 
v3= f2+e3; v4=*f2+e4; 
v6=f3+e6; v6=+f3+e6; v7=*f3+e7; 
f3=*fl+*f2+dl;

/variances 
el to e7=*; 
dl=*;

/cov 
f2, f 1=*; 
e7, e6=*; 
e4, e5=*;

/matrix=correlations
1 . 0 0 0  

.739 1.000

.073 -.103 1.000

.061 -.053 .718 1.000
-.335 -.403 .077 .216 1.000
-.254 -.348 .130 .139 .597 1.000
-.304 -.340 .108 .067 .516 .830 1.000
/standard deviations
1.872 2.890 1.630 2.333 3.506 6.824 9.331
/lmtest 
set=pee;

/wtest
/end


